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Abstract 

We present an account of models explanation from the philosophy 
of science and relate it to the practice of scientific discovery using 
a class of generative AI model ensembles. The key takeaway is that 
a complexity metric that represents explanations of the necessary 
length (a good tradeoff between compression and accuracy) has to 
be used to reduce uncertainty. We illustrate the approach with an 
example from catastrophe-risk and risk-hedging modeling.  

Keywords: causal explanation, climate risk, generative AI, symbol-
ic regression, complexity metrics

IA generativa para el descubrimiento científico: 
incertidumbre y complejidad en modelos empíricos

Resumen

Presentamos una descripción de la explicación de modelos desde 
la filosofía de la ciencia y la relacionamos con la práctica del descu-
brimiento científico utilizando una clase de conjuntos de modelos 
generativos de IA. La conclusión clave es que se debe utilizar una 
métrica de complejidad que represente explicaciones de la longitud 
necesaria (una buena compensación entre compresión y precisión) 
para reducir la incertidumbre. Ilustramos el enfoque con un ejem-
plo del modelo de riesgo de catástrofe y cobertura de riesgo.

Palabras clave: explicación causal, riesgo climático, IA generativa, 
regresión simbólica, métricas de complejidad
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将生成式人工智能用于科学发现：经

验模型中的不确定性与复杂性

摘要

我们从科学哲学的视角介绍了模型解释，并使用一类生成式
人工智能模型集合，将其与科学发现的实践联系起来。关键
要点在于，必须使用一个能解释必要长度（即压缩与准确性
之间的良好权衡）的复杂性指标，以减少不确定性。我们通
过巨灾风险和风险对冲建模示例来阐明该方法。

关键词：因果解释，气候风险，生成式人工智能，符号回
归，复杂性指标

Introduction

Autonomous scientific discov-
ery relies on explainable model 
generation. To arrive at a sci-

entific consensus and describe systems 
at a proper scale, models often become 
ensembles of models rather than single 
theories. Following a multi-target mod-
eling approach, we can define general 
rules of thumb, such as that simple and 
accurate explanations are better; the 
same applies to our generated models. 
The technique that we discuss in this 
paper produces multi-target ensembles 
expressed as human-readable mathe-
matical formulas.  

Symbolic regression via genetic 
programming is a generative AI tech-
nique ideal for producing empirical, 
explanatory scientific advancement. 
We will begin by introducing general 
concepts about causal explanation from 
the philosophy of science and notions 
related to uncertainty and explanation 

from complex systems engineering. We 
will then proceed to show the practi-
calities of the modeling approach using 
Data Modeler, the evolutionary com-
puting software written in the Wolfram 
Language. Finally, we will illustrate the 
method with an example that relates fi-
nancial returns in an insurance product 
to time series of ocean surface tempera-
ture anomalies.

Scientific explanation

Wesley Salmon, one of the 
most influential philoso-
phers of scientific explana-

tion, proposed a definition of expla-
nation according to which to explain 
is to demonstrate the causal processes 
behind the occurrence of events (Gala-
votti, 2022). He advocated that hu-
man knowledge is uncertain and that 
causation should be defined probabilis-
tically (Salmon, 2006). His explanation 
followed Reichenbach’s Principle of the 
common cause, which states that “if an 
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improbable coincidence has occurred, 
there must exist a common cause.” 

Models are instrumental in the 
practice of science. According to Boku-
lich, model-based explanations are ex-
planations in which the explanans use 
particular attributes or behaviors seen 
in an idealized model or computer 
simulation to explain why the (usually 
real-world) explanandum phenomena 
show the characteristics it does (Boku-
lich, 2017). Those who have defended 
the explanatory capacity of models have 
often claimed that additional require-
ments must be satisfied before a mod-
el’s presentation of a notable pattern 
or phenomenon can be considered an 
accurate explanation of its real-world 
counterpart. Not all models are explan-
atory, and a sufficient theory of model 
explanation must offer justification for 
such distinctions. The method of Boku-
lich is based on Woodward’s (Wood-
ward, 2004) counterfactual theory of 
explanation, in which “the explanation 
must enable us to see what sort of dif-
ference it would have made for the ex-
planandum if the factors cited in the 
explanans had been different in various 
possible ways.” She contends that mod-
el explanations often have three char-
acteristics: The explanans begins with a 
crucial reference to a scientific model, 
which, like all models, is an idealized, 
abstracted, or dramatized portrayal of 
the target system. Second, the model 
explains the explanandum by demon-
strating how the model components ac-
curately represent the patterns of coun-
terfactual reliance in the target system, 
allowing one to answer a wide variety 
of what Woodward refers to as “what-

if-things-had-been-different” inquiries. 
Lastly, there must be what Bokulich 
refers to as a justificatory phase, which 
specifies the sphere of application of 
the model and demonstrates where and 
to what extent the model can be relied 
upon as a sufficient representation of 
the target for the intended purpose(s). 
Therefore, a necessary condition for 
modeling is trustability.

As Reichenbach stated, mod-
els act as representations and should 
explain the common causes of things. 
However, as Tversky puts it, “Typically, 
there is no single right representation 
exactly because different representa-
tions capture different information, 
highlight different relationships, and 
encourage different inferences” (Mag-
nani & Bertolotti, 2017) . In computer 
modeling and modeling of complex 
systems, in particular, the answer to the 
issue of whether computer simulations 
and analytical models represent distinct 
modes of thinking depends on the de-
gree of analysis considered. The distinc-
tions between analytical and simulated 
models become increasingly apparent 
upon closer inspection. Complex sys-
tems are well suited for computer sim-
ulations, despite the fact that this may 
decrease the need for analytical answers 
(Basso et al., 2017).

Complexity as a measurement 
of uncertainty

Yaneer Bar-Yam, the complex 
systems theorist, summarizes 
the explanation issue in an inter-

esting way: “The inherent compression 
in the use of language for describing 
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familiar complex systems is the great-
est contributor to uncertainty in com-
plexity estimates” (Bar-yam, 2019). As 
he goes to show, when characterizing a 
system n (x,t), we are interested in mac-
roscopic observations throughout time. 
As with positional uncertainty, a mac-
roscopic observer is unable to discern 
the time of observation to an accuracy 
of less than T = [Delta]t. To explain this, 
we say the system is represented by an 
ensemble with probability PL, T (n(x;t)) 
or, more broadly, PL, T (n(x, p;t)). This 
ensemble consists of all microstates that 
occur within the time period T. This 
may look distinct from the spatial un-
certainty definition we used.

Nevertheless, the definitions 
may be rewritten to make them look 
comparable. In this restatement, we 
acknowledge that the observer con-
ducts measurements that are, in es-
sence, averages of the different poten-
tial microscopic measurements. The 
observer must characterize the system 
(or system ensemble) based on the av-
erage data across space and time. The 
usage of an ensemble is advantageous 
since one observer may only measure 
one quantity, but other quantities that 
can be measured with the same degree 
of accuracy may be considered. For in-
stance, the observer may quantify cor-
relations between the locations of par-
ticles that remain constant across time. 
If the density n(x,t) was averaged across 
time, these correlations might vanish 
due to the movement of the whole sys-
tem. However, when the ensemble is 
averaged, they do not. The complexity 
profile C (L, T) is defined as the quan-

tity of information required to describe 
the ensemble PL, T (n(x;t)).

Evolutionary Model Complexity 
and Scientific Explanation

So far, we know that there are in-
herent limitations imposed by 
language (i.e., by the length of ex-

pressions of the mathematical language 
used to construct explanatory models). 
We will now discuss a class of genera-
tive AI models based on evolutionary 
algorithms, which offer a viable alter-
native to create expressions of different 
degrees of complexity and explanatory 
power. The implementation is done in 
the software Datamodeler (Kotanchek, 
2010) and has been used to generate 
scientific models in different disci-
plines, from life (Pradhan et al., 2020) 
to social sciences (Venegas et al., 2022).

Definitions

Symbolic regression

A function that executes symbolic re-
gression(s) via genetic programming 
to identify functional forms, f[x] = y 
where “x” is an input data record and 
“y” is a corresponding scalar element of 
the response vector against which the 
evolving functions will be judged. The 
input data may either be a matrix or a 
vector, but the length must match that 
of the supplied response vector.

Modeling Objective

A modeling option associated with 
SymbolicRegression defines the quality 
of the model, whereas a better model 
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should have lower metric values. This 
should be a pure function or a list of 
pure functions where the inputs are 
defined as pureFunc[model, modelRe-
sponseVector, observedResponseVec-
tor, opts].

Model Complexity

A function that returns the model com-
plexity. For a Genetic Programming 
Model, it is defined as the Total of the 
LeafCounts of all nodes in the genome. 
This metric could also be viewed as the 
visitation length totaling the number of 
links traversed starting from the root 
node to each of the end nodes. It is used 
as part of the default ModelingObjec-
tive for symbolic regression.

During SymbolicRegression we 
typically want to minimize both pre-
diction error and the complexity of the 

developed models (as well as, possi-
bly, the nonlinearity and other model 
characteristics). The ModelComplexity 
is correlated to but not directly cou-
pled to - the nonlinearity of the mod-
el. However, it is relatively efficient to 
calculate. ModelComplexity provides 
a finer-grained assessment of the com-
plexity of the model structure than the 
ModelGenome Depth or LeafCount.

The model complexity may be 
viewed as the visitation length, which 
is defined as the number of nodes tran-
sited from the root node to each of the 
nodes (not just leaves). The Random-
Models below (Figure 1) are labeled 
with their associated ModelComplexi-
ty. To illustrate, a model with two nodes 
has a ModelComplexity of three—one 
for the root node plus two for the path 
from the root node to the other node.

Figure 1. Model tree plot



Journal on Policy and Complex Systems 

46

Genome Complexity

Genome Complexity is a function that 
returns the genome complexity of the 
supplied expression, which is defined as 
the Total of the leaf counts of all nodes 
in the genome expression. Another way 
of expressing this is as the visitation 
length — i.e., the total number of seg-
ments that would be traversed starting 
from the root node to all of the leaves.

Below we synthesize some Ran-
domModels and look at the expressions 
(phenotypes) as well as the genetic 
code (genome) used to create that ex-
pression. We also visualize the genetic 
code and calculate its complexity. The 
ModelComplexity function simply ex-
tracts the genetic code from each mod-
el and returns its GenomeComplexity 
(Figure 2).  

Figure 2. Model complexity

There are several important points to 
note in the above figure:

(1) The ModelComplexity is calculated 
based upon the genetic code and NOT 
the resulting expression. Due to introns 

(nonfunctional genetic material), we 
could have the same ModelExpression 
resulting from models having different 
genetic material and different Genome-
Complexity.



Generative AI for Scientific Discovery: Uncertainty and Complexity in Empirical Models

47

(2) The complexity measure is a mea-
sure of representational complexity and 
NOT the complexity or nonlinearity 
of the response surface. Thus we could 
have two expressions of similar com-
plexity that are very different in terms 
of their nonlinearity, e.g., IV[x] → 1/x
and SQ[x] → SQRT(x) which would 
both have a genetic complexity of 3 but 
be much different in terms of their re-
sponse characteristics—especially if in 
a region including zero.

ModelEnsemble

ModelEnsemble is a data structure 
that represents a model comprised of 
a group of models. Typically created 
using CreateModelEnsemble or Cre-
ateFittedEnsemble , the ensemble is 
evaluated based upon the Ensemble-
EvaluationFunction with the trustabili-
ty of that prediction measured using the 
EnsembleDivergenceFunction.

To start, let us define a reference 
function and sample it at a variety of 
points, as seen in Figure 3.

Figure 3. “Truth” model

To build an ensemble, we want 
to have a diverse collection of models. 
Towards that end, we will run eight In-

dependentEvolutions in parallel. One 
thousand thirty-four models are gener-
ated, as shown in Figure 4.
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Next, we use CreateModelEn-
semble to select an ensemble from the 
identified region of good models (Fig-
ure 5). The default behavior of this 

function is to overweight the knee of 
the ParetoFront while simultaneously 
including diverse models.

Figure 4. Accuracy/Complexity tradeoff for models

Figure 5. Mathematical expressions of models

As we can see from the EnsemblePredictionPlot (Figure 6), the ensemble 
prediction fits the data quite well.
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Figure 6. Prediction plot for models in ensemble

The EnsembleQuality is calcu-
lated and embedded in the generated 
ModelEnsemble. Here it is displaying 
{R2, # Variables ,# Models, Avg Model 
Complexity} =  {1., 1, 12, 70.8333}

Next, let us look at the ensemble 

prediction relative to the available data 
and the (normally unknown) true mod-
el. Again, we see that the ensemble pre-
diction (Figure 7) fits the observed data 
well and, additionally, has reasonable 
behavior when asked to extrapolate.

Figure 7. Comparison using average of models in the ensemble
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If we include the behavior of the 
individual models embedded in the en-
semble, we see that they are constrained 
to agree where there is data; however, 

outside that region, they are encour-
aged to deviate due to the emphasis on 
diversity. Figure 8 shows both the aver-
age and the individual models. 

Figure 8. Comparison using constituent models of the ensemble

Model diversity is the foundation 
for detecting the trustability of the en-
semble prediction. As we can see below, 
where there is data, the models agree, 

and—where not constrained by the 
data—the constituent models of the en-
semble diverge. 
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Uncertainty, Chaotic 
Systems, and Complexity 

The divergence in an ensemble of 
evolutionary models is the key 
to assessing trustability in scien-

tific modeling. Arguably, it is even more 
useful when dealing with complex sys-
tems modeling, as we will show. 

According to Palis (ROGERS, 
1999), sensitivity with regard to initial 
conditions is crucial: the long-term 
outcome may vary significantly when 
just little changes are made to the orig-
inal conditions or first event. This is 
evidently the case with mathematical 
models for weather forecasting, as Lo-
renz pointed out in his astounding 1963 

work: Future responses change signifi-
cantly (degree of uncertainty) with very, 
very tiny variations in beginning data. 
Such variance is inherent since it is dif-
ficult to predict the precise beginning 
values of temperature, pressure, the 
quantity of precipitation, and so forth. 
These systems are termed chaotic.

The notion of a complex system 
is significantly more modern. We want 
to describe extremely complex systems, 
such as the behavior of neuron networks 
(brain), and we know some of the prop-
erties that we want to impose on the 
dynamical systems that could model 
them, such as nonlinearity, adaptability 
(i.e., the system is constantly changing 
in response to external parameters), 

Figure 9. Divergence
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randomness, multiple attractors, fractal 
structure, and others. Also, such a sys-
tem should not be completely chaotic, 
but it should be close (on the border-
line of chaotic systems). Particularly, 
we should not have exponential sensi-
tivity with regard to initial conditions 
for a complex system. In other words, 
the long-term behavior of dynamical 
systems that are suitable for modeling 
a “complex phenomena” should be sen-
sitive to initial conditions but not as 
strongly as in chaotic systems. In addi-
tion, the local (almost punctual) struc-
ture of the dynamical system should 
be simple and resilient, exhibiting little 
variation when the system is modified 
significantly.

As Palis puts it, mathematically, 
we are far more advanced in our un-
derstanding of chaotic systems (there 
is still a great deal of work to be done, 
but we can at least propose a possible 
global scenario) than complex systems, 
primarily due to the lack of good dy-
namical models for the examples, such 
as the brain, that we have considered 
as complex phenomena. Here is where 
generative models (of the evolutionary 
type) could really make a difference in 
our understanding of complex systems.

A brief empirical 
model example

We will now analyze a com-
plex hybrid system (eco-
nomic) and a chaotic system 

(weather). Specifically, we use invest-
ment data (hedge fund) generated by 
the interaction of economic agents (in-
vestors) placing bets on insurance mod-

els of the weather. To illustrate the im-
portance of scientific modeling related 
to this topic, it should suffice to consid-
er that the particular fund manager, in 
this case, currently has 34 billion USD 
under management; this class of mod-
eling will become increasingly import-
ant due to climate change risk and the 
need to better understand and mitigate 
its effects. 
The sources are as follows:
Weather data: is NOAA National Cen-
ters for Environmental Information, 
Climate at a Glance: Global Time Se-
ries, published April 2022, retrieved on 
May 1, 2022, from https://www.ncdc.
noaa.gov/cag/
Insurance hedge-fund data: Returns 
from Eurekahedge for the following 
product PIMCO ILS Fund SP II and 
prospectus https://www.pimco.com/ 
en-us/insights/investment-strategies/ 
featured-solutions/insurance-linked- 
securities-seeking-returns-beyond-tra 
ditional-assets/

Description

We generated models using 
as predictor variables ocean 
temperatures (globally and 

for 14 regions of the world). The target 
variable is the monthly returns of the 
insurance-linked hedge fund for the 
period from December 2019 to March 
2022 (27 observations).  In total, 1069 
models were generated.

 

https://www.ncdc.noaa.gov/cag/
https://www.ncdc.noaa.gov/cag/
https://www.pimco.com/en-us/insights/investment-strategies/featured-solutions/insurance-linked-securities-seeking-returns-beyond-traditional-assets/
https://www.pimco.com/en-us/insights/investment-strategies/featured-solutions/insurance-linked-securities-seeking-returns-beyond-traditional-assets/
https://www.pimco.com/en-us/insights/investment-strategies/featured-solutions/insurance-linked-securities-seeking-returns-beyond-traditional-assets/
https://www.pimco.com/en-us/insights/investment-strategies/featured-solutions/insurance-linked-securities-seeking-returns-beyond-traditional-assets/
https://www.pimco.com/en-us/insights/investment-strategies/featured-solutions/insurance-linked-securities-seeking-returns-beyond-traditional-assets/
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Figure 10. Subset of models (first round of modeling), complexity and error  

Discussion

Figure 10 shows models ordered 
from less complex (rank 1) to 
higher complexity (rank 19). 

Models with similar mathematical ex-
pressions, in terms of descriptive form, 
have close complexity metrics (for in-
stance, for rank 10, complexity is 65; 
for rank 11 is 66). Although it may ap-
pear that the error of the models in the 

sample is relatively high (between 0.322 
and 0.659), this is not an issue because 
the purpose of the modeling in a pre-
liminary exploratory round is to assess 
modeling potential and explanatory 
causality, not generating predictive ap-
proximations. 

The first modeling attempt is 
quick (only 5 minutes); however, it ren-
ders insights almost immediately. We 
note how one region of the world is no-
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toriously absent from the list of models: 
North America. In fact, if we investigate 
the presence of variables across models 
(Fig 11), we find that Caribbean ocean 

temperatures are a factor in 100% of the 
models while North America only has 
about 1%. 

At this point, it is insightful to 
consider the process of the fund opera-
tor. As indicated in the prospectus, they 
use multiple catastrophe-risk models 
augmented by proprietary analytics to 
better comprehend, quantify, and man-
age risks based on meteorological sci-
ence (floods, hurricanes, etc.), property 
engineering, and claims data.

Arguably, just one round of 
modeling is necessary (as a toy mod-
el) but not sufficient to characterize the 
system. In the Appendix, we include ex-

hibits that describe the results of a sec-
ond round of modeling, although many 
more are encouraged in real-world ap-
plications. Another reason why multi-
ple rounds of modeling are advisable 
is that we should not draw quick con-
clusions from a stochastic modeling 
process; for instance, the prevalence 
of the Caribbean region and exclusion 
of North America in the first round of 
modeling might as well be a by-product 
of the way particular modeling settings 
handle exclusions.

Figure 11.Variable presence (percentage) across models
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Uncertainty reduction 
by Ensemble creation

If one wants to increase the richness 
of the explanation, it suffices to cre-
ate a group of models (en ensemble) 

using the appropriate combination of 
good performance (low error) and low 
complexity. Such a group is marked by 
the square box in Figure 12 and then 
shown in more detail in Figure 13.

Figure 12. Optimal models

Figure 13. Ensemble sub sample

The qualities of the ensemble are 
superior to any single model’s. Figure 
14 shows the key statistics and variables 

for our example, an ensemble contain-
ing 12 models.
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As we can see in the tables, the 
quality (R2=0.92562) of the ensemble 
is higher than the accuracy of any indi-
vidual model. At the same time, the dif-
ferent complexity values provide access 
to different levels of explanation. There-
fore, we gain diversity while retaining 
the descriptive benefits of the average 
in the ensemble.  

Arguably, just one round of 
modeling is necessary (as a toy mod-
el) but not sufficient to characterize the 
system. In the Appendix, we include ex-
hibits that describe the results of a sec-
ond round of modeling, although many 
more are encouraged in real-world ap-
plications. Another reason why multi-
ple rounds of modeling are advisable 

is that we should not draw quick con-
clusions from a stochastic modeling 
process; for instance, the prevalence 
of the Caribbean region and exclusion 
of North America in the first round of 
modeling might as well be a by-product 
of the way particular modeling settings 
handle exclusions (i.e., of some of the 
nuances of small data sets as well as en-
semble definition). 

Conclusion

We have shown how a class of 
generative AI models based 
on evolutionary algorithms 

allows us to be aware of and ultimately 
reduce uncertainty. We become more 

Figure 14 .Ensemble summary
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confident of the causal explanations 
(driver variables) of particular phenom-
ena, and we can ascribe both a complex-
ity metric and a quality measurement to 
each model (or group of models) devel-
oped. We can also include chaotic and 
complex systems in the analysis, using 
summary figures and statistics that de-
scribe the behavior and interrelation of 
physical and social systems.  

The policy implications are ev-
ident: instead of long policy develop-
ment cycles that depend on years-long 
research programs, the practice of sci-
entific discovery becomes a highly iter-
ative process where relevant questions 
and the possible causes of things sur-
face quickly. 
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Appendix

A second round of modeling might include a subset of popular variables. For in-
stance, the combination of Asia, the Atlantic, the Caribbean, and Hawaii is present 
in 6.8% of the models of the first round (Fig 15). 

Figure 15. Most popular variable combinations
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The second round produced 2076 unique models. The settings are shown below 
(Fig 16).

Figure 16. Model summary



Journal on Policy and Complex Systems 

60

As usual, ensembles are created in subsequent rounds of modeling. Typically, both 
the overall modeling performance and individual variable behavior are analyzed, 
as seen in Fig 17. 

Figure 17. Ensemble prediction plot and residuals
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